Augmenting Reality

High Dynamic Range Imaging Sequential Wave Imprinting Machines

> By- Sarang Nerkar Supervisor- Prof. Steve Mann

High Dynamic Range (HDR) Imaging

Goal: Develop a method for optimal exposure selection for HDR

Extrapolative Lightspace Method for HDR Exposure Selection

The *M* exposure settings, $\{E_1, E_2, E_3, ..., E_M\}$, were chosen as follows:

- Lowest (darkest) exposure value E₁ is set at 1/3 of the difference between the minimum possible exposure setting E_{min} and maximum possible exposure setting E_{max}.
- Highest (brightest) exposure value E_M is set at 2/3 of the difference between the minimum possible exposure setting E_{min} and maximum possible exposure setting E_{max}.
- 3) Camera set to E_1 , and image I_1 captured.
- 4) Camera set to E_M , and image I_M captured.
- 5) Image I_1 is converted to lightspace image L_1 .
- 6) Image I_M is converted to lightspace image L_M .
- 7) Histogram H_1 formed from L_1 .
- 8) Histogram H_M formed from L_M .
- 9) Number of saturated pixels s_1 calculated from I_1 .
- 10) Number of saturated pixels s_M calculated from I_M .
- Affine function derived from s₁ and s_M, and its intercept is calculated at a predicted value of zero pixels saturated. This leads to a new value of E_M.
- 12) Number of zero-saturated pixels u_1 calculated from H_1 .
- 13) Number of zero-saturated pixels u_M calculated from H_M .
- 14) Affine function derived from u_1 and u_M , and its intercept is calculated at a predicted value of zero pixels saturated. This leads to a new value of E_1 .
- 15) Repeat to (3).

Composited Image - HDR

Composited HDR Image taken on a clear sunny day

Another composited HDR Image taken on a partially cloudy day

Extrapolative Lightspace Method for HDR Video Exposure Selection

Sarang Nerkar, Ryan Janzen, Pete Scourboutakos, and Steve Mann

Abstract—We propose a method to automatically adjust multiple exposure-value settings for HDR video compositing.

The method uses imagespace-to-lightspace post-conversion and tonal extrapolation to iteratively select optimal exposure settings, as opposed to present systems, which use manually set settings. The limiting factor becomes the image sensor as opposed to the implementation of the algorithm, as in present systems. By choosing the exposure settings with the described algorithm, the high dynamic range sampling process can be adapted to various lighting environments. This algorithm is especially useful for ultra low power capture of optimally selected exposures which can be processed later using well-known HDR compositing methods. Instead we calibrate a nonlinear model of the camera's response function, which converts a pixel value into an estimated true quantity of light. This true, physical range of values is referred to as lightspace [10].

The *M* exposure settings, $\{E_1, E_2, E_3, ..., E_M\}$, were chosen as follows:

1) Lowest (darkest) exposure value E_1 is set at 1/3 of the difference between the minimum possible exposure setting E_{min} and maximum possible exposure setting

Ongoing and Future Work

Sequential Wave Imprinting Machine (SWIM)

An augmented reality space-based oscilloscope that visualizes invisible waves

An augmented reality space-based oscilloscope that visualizes invisible waves

Limitation of previous design: Size of LM3914 chips

Goal: Design a new SWIM without the use of LM3914 chips to eliminate the size limitation

Ongoing and Future Work

• Eliminate the input voltage limitation for a more scalable product

Conclusion

- A method for optimal selection of exposures for high dynamic range imaging was developed.
- A novel circuit design for a smaller/ more wearable sequential wave imprinting machine was developed

Questions

Simple in-flight Experiment

HDR OFF

HDR ON

HDR AUTO

247 La suprove on problems () and 3 Range af enformeres / 6000 150 50 highest shutter 1/30 p151.ecf.utoronito. GetFileAttack 2016/201_074441.jpz >> hdr auto 2016/201_074852.jpg >> hdr off 2016/201_075242.jpg >> hdr off 2016/201_075242.jpg >> hdr on boto the holds anto I holds on I almost no difference holds off I holds on I by difference holds off I holds on I by lifference Crobbers > O No details en the User: nerkarsa@p151.ecf.utoronto.ca Name: nerkarsa (2) We details in the Host: p151.ecf.utoronto.ca Date: Wed Nov 30 20:59:54 EST 2016 Ū right battom area C Job: GetFileAttachment Class: p151.ecf.utoronto.ca darked spot ***** Id: 241 3 No golden glow on douds

LOW

MEDIUM

HIGH

Composited HDR

