

High Dynamic Range Augmented Reality (HDR AR)

Vivek Mogalapalli, Shariq Khalil Ahmed, Sarang Nerkar (Team 568) Supervisor: Prof. Steve Mann, Administrator: Ross Gillett

PROBLEM

- In our world, there are specific scenarios where objects are lit too brightly for the human eye to comfortably see. We are naturally unable to properly view environments with such objects.
- Existing solutions like sunglasses reduce the brightness of these objects but also reduce the brightness of the environment

Figure: Sunlight glare while driving

Figure: Bright light during welding

HIGH DYNAMIC RANGE AND **CURRENT LIMITATIONS**

- High Dynamic Range (HDR) images expose the details of dark and bright regions in a scene simultaneously
- Multiple images of the same scene are captured at different exposures which are combined into a single HDR image
- **Limitation 1:** Manual selection of optimal exposures for a scene
- **Limitation 2:** Not real-time due to slow and complex algorithms
- **Limitation 3:** Not mobile as the algorithms are energy intensive and require powerful processors

Bad Choice of Inputs

THE HDR REALITY HEADSET

- The headset consists of an Android Phone which runs our HDR Reality application
- The application creates an HDR image that captures all details of the scene by combining pictures taken at 3 different optimal exposures

Figure: The headset

Figure: View through the headset

• The optimal exposure values for the scene are **automatically** computed

• The headset functions in **real-time** through parallelization on a GPU and a pipelined design

Input Frame			Processing Pipeline				Output Frar	
t = 3	Frame 4 low	-	Frame 3 high	Frame 2 mid	Frame 1 low		Frame 1 HDR	
t = 4	Frame 5 mid		Frame 4 low	Frame 3 high	Frame 2 mid		Frame 2 HDR	
t = 5	Frame 6 high	-	Frame 5 mid	Frame 4 low	Frame 3 high		Frame 3 HDR	

• The algorithms are optimized for low powered mobile processors to make the headset unterthered and **portable**

- Professor Steve Mann and Professor Ross Gillett
- Professor Steve Mann's Research Team Personnel: Max Hao Lu, Raymond Lo, Sen Yang, Mir Adnan Ali, Ryan Janzen